Computer Peripherals

School of Computer Engineering
Nanyang Technological University
Singapore

These notes are part of a 3rd year undergraduate course called "Computer Peripherals", taught at Nanyang Technological University
School of Computer Engineering in Singapore, and developed by Associate Professor Kwoh Chee Keong. The course covered
various topics relevant to modern computers (at that time), such as displays, buses, printers, keyboards, storage devices etc... The
course is no longer running, but these notes have been provided courtesy of him although the material has been compiled from
various sources and various people. I do not claim any copyright or ownership of this work; third parties downloading the material
agree to not assert any copyright on the material. If you use this for any commercial purpose, I hope you would remember where you
found it.

Further reading is suggested at the end of each chapter, however you are recommended to consider a much more modern alternative
reference text as follows:

COMPUTER

ARCHITECTURE

Computer Architecture: an embedded approach
Ian McLoughlin
McGraw-Hill 2011

http://novella.mhhe.com/sites/0071311181/information_center_view0/

Chapter 1. Computer Buses

1.1. Microcomputer Bus Structure

What Is a Bus? One of the misunderstood features of computers today is the bus. Today one
hears about the system bus, the local bus, the SCSI bus, the ISA bus, the PCI bus, the VL-bus,
and now USB. These terms are also confused with other terms for slots, ports, connectors, etc.
What is a bus, then, and how do these buses, differ?

1.1.1. Bus Definition

First, what is a bus? Basically, it is a means of getting data from one point to another, point A
to point B, one device to another device, or one device to multiple devices. The bus includes
not only the actual capability to transfer data between devices, but also all appropriate signaling
information to ensure complete movement of the data from point A to point B. To avoid loss of
data, a bus must include a means of controlling the flow of data between two devices, in order
to insure that both devices are ready to send and/or receive information. Finally, both ends must
understand the speed with which data is to be exchanged. A bus provides for all of these
elements, and it includes a port definition to allow physical interfacing or connecting of two or
more devices.

Control Bus

1 > address Bus
0 0 &

U
i} 1
T80 l 1 I

AT Bus Slots
T | e |

N = 4 4'!5
E%—_@: =8 g 5i L e (—
§ s x L e —

8237

Address|
Buffer l
In

o 80286

Address
Latch

gn
I
O

| Bus

T e
Data Addresgl
Buffer uffer

Page
Regater

eal Time:
CMOS @ ook

——> 80287

Vo

R
o
o
>
82288

AT bus architecture

The bus has various component parts of a microcomputer connected by a number of
different wires, which usually appear in the form of tracks on a Printed Circuit Board (PCB).
These wires can be classified into four functional groups: power, address, data and control.

http://www.lintech.org

Computer Buses 2

The physically largest PCB tracks are the power rails, since they have to carry the largest
electrical currents. These days the voltage levels are usually +3V, +5V,+12V and ground. +5V
are used for TTL and compatible whereas +12V supply lines were often required for some
peripherals and interface to analog (linear) circuitry.

The address bus consists of a number of parallel lines which travel between CPU,
memory and I/O chips. Information on the address bus enables the various memory and I/O
devices to be accessed. Local address decoding circuitry is necessary for the memory (I/O
device) to recognize the address as its own. The number of address lines varies with the
particular microcomputer concerned, but is typically 16 for systems which use an 8-bit CPU, 24
for 16-bit CPUs, and 32 for 32-bit processors. It should be noted that the external address bus is
not necessarily the same width as the address bus used internally within the CPU.

The data bus likewise consists of a number of parallel lines, and is either 8, 16, 32 or 64
bits wide. Both instructions and data travel along the data bus.

The control lines do not constitute a bus as such, but rather are a collection of individual
lines or wires. Typical control lines are read, write, interrupt request and reset.

Each external device connects to the microcomputer system via its own dedicated
peripheral support chip. These chips are controlled using on-chip programmable registers. At
the very least, a peripheral chip will contain a control register and a status register. By writing
various bit patterns to the control register, the chip can be made to perform its various
functions. Similarly, by reading the bit patterns in the status register and responding
accordingly, the CPU can effectively interact with the external world.

Because computer buses on a PCB consist of many parallel wires separated by an
insulating fibreglass layer, they behave electrically as a long capacitor. Any circuit, such as a
CPU which is attempting to drive such a bus, must therefore be capable of driving a capacitive
load. TTL circuits are well suited to this task, but MOS circuits have limited drive capability.

Maximum electrical power (the product of voltage and current) is transmitted down the
line when the terminating resistor (near or far end) is chosen to match the characteristic
impedance of the miniature transmission line formed from the copper track and the insulating
fibreglass of the PCB (this characteristic impedance, Z0, depends on the distributed resistance,
capacitance and inductance along the PCB track, which is typically around 100 ohms). The
bipolar (TTL) output transistor has a built-in resistor. If this collector (or load) resistor is
removed, and made external to the gate then it becomes an Open Collector (OC) gate. ICs can
incorporate such OC outputs, thus necessitating the connection of an external resistor in order
to operate correctly.

Several such OC drivers are needed in order to send data from a CPU to a peripheral
support chip located some distance away on the same PCB. Thus bus drivers will be required at
the transmitter end, and bus receivers at the receiver end in such a system.

Bi-directional bus transceivers are required on the data bus, since data can travel not only
from the CPU to the peripheral device, but also in the opposite direction. Transceivers are
required at both the CPU and peripheral device ends, and can be likened to terminators at either
end of a long transmission line (in this case the transmission line is formed from the
interconnecting tracks on the PCB and the insulating fibreglass on which the tracks have been
etched).

Address decoders compare the information present on the address bus at any time with
the device's own unique identification (ID) address; when both addresses are identical, the
output of the decoder is latched in order to form a Chip Select signal for the peripheral chip in
question. In this way only 1-of-2n devices is selected at any particular time, assuming n address
lines are used for decoding.

We have seen how several peripheral devices can connect to the same bus, and how, by
placing the appropriate information on the address bus, only one such device will be selected at

http://www.lintech.org

Computer Buses 3

any particular time. Obviously, we require some method of physically connecting several
different devices to a single bus, such that only one device is electrically connected at any one
time. There are two widely used methods of achieving this in practice, namely OC and Tri-State
(TS).

OC gates were commonly used in minicomputer buses during the 1970s, but have since
been superseded by TS bus drivers/transceivers, owing to the high power consumption of the
former. TS gates consist internally of an additional output transistor which has the effect of
enabling or disabling the gate, depending on the signal applied to a third control input. If a LO
is applied to the control input, then the gate is disabled; applying logic levels at the inverter
input will produce neither a LO nor a HI at the output. Under these conditions the output is said
to be floating, or in its high impedance state; the device output is effectively disconnected.
Applying a HI to the control input enables the inverter, such that the usual truth table applies, as
indicated.

The individual PCB tracks which constitute a bus will not always be exactly the same
physical length. This is not so critical at low speeds (1 or 2 MHz), but becomes increasingly
more significant as the system clock is increased (the PCI bus are capable of operating at
speeds in excess of 33 MHz and AGP is operated at 66 MHz).These minor differences in
distance traveled across the surface of a PCB manifest as differences in the time it takes the
different bits of data to travel from the CPU to the peripheral chip(s). A phase difference
between adjacent signals is experienced at the distant receiver (or slave) end, when compared
with what was transmitted by the bus master.

1.2. Speed of Data transfer

1.2.1. Serial vs. Parallel

One main aspect of a bus is whether the data is transferred in a serial or parallel fashion.
In serial mode, the bits of each character are transmitted one at a time, one after another. For
example, with each character containing 8 bits, the character is sent between devices, sending
the first bit, then the second bit, third bit, and so on until the eighth bit is sent.

Contrast this with parallel transmission, where the bits of a character or data are
transferred simultaneously. The parallel interface or transmission contrasts with the serial by
allowing the devices to transmit all of a character's bits simultaneously instead of one at a time.

1.2.2. Speeds of Buses

The speed of serial bus is generaly expressed in bits per second (bps). For example, when
a port, bus, or interface highlights 56-Kbps capability, the maximum throughput is 56,000 bits
per second. To translate that into actual characters (bytes) per second, we need to make a
calculation. For a rough estimate of maximum throughput, one can add the start and stop bits of
a typical character, totaling 10 bits per character, and divide the interface speed by the number
of bits per character. In the case of a 56-Kbps bus or interface, the maximum throughput would
be approximately 5600 characters per second. This is only an approximation. Each bus has
what is referred to as "overhead" to provide the other highlighted functions of flow control,
addressing, etc. The simplicity of the bus will dictate the amount of overhead required. Some
interfaces, such as those of devices that are locally connected via RS-232, have little overhead.
Hence the actual throughput is relatively close to the maximum speed rating. The RS-232
interface is NOT generally referred to as a bus, but it does have the elements of a bus. (For a
complete description of RS-232, refer to CE301.)

http://www.lintech.org

Computer Buses 4

The keyword here is maximum, most buses are set up electrically to support a maximum
(or burst) throughput rate, as well as a sustained throughput rate. When calculating throughput,
use the sustained rate for a closer approximation of speed. The maximum rate is best case rate
that a bus, or interface can handle.

1.2.3. Sustained vs. Burst Throughput

A burst rate is the maximum rate at which data can be sent or burst over a bus. A
sustained rate is the rate at which data can be continuously sent over the bus. The sustained rate
is the rate at which data can be sent over the bus in a consistent manner. It is a better metric
than the burst rate for throughput expectations on a bus, as it reflects the typical transmission
speed.

1.3. Bus Protocols

Protocol simply refers to the set of rules agreed upon by both the bus master and bus slave as to
how data is to be transferred over the bus. Flow control is an important aspect of a protocol.
Flow control is used to regulate the flow of information between the devices. When computers
are communicating with other devices, flow control must be used to ensure that data is not lost.
For example, suppose that two computers are connected in order to upload and download data.
Whether the connection involves modems, or the computers are connected back to back, at
some point one of the computers will need to store the received information to a disk file. What
happens to the incoming data while the file is being written? This defines the requirement for
flow control.

Flow control is the ability of a receiving device to regulate the flow of data from the
sending device. Protocols break the data into blocks or frames of data, hence the term block
size. Some protocols support multiple block sizes, requiring the two communicating devices to
agree on the block size before transmission. Typical block sizes are 128, 256, 512, 1024 (1K),
and 2048 (2K) bytes. The sending device will send the information a block at a time. In
addition, the sending device will perform a calculation on the bits of the data in the block. The
result of this calculation is some form of check character or frame-check sequence. The block-
check character (BCC) is typically one or two bytes appended to the block of data. The block
and appended character(s) are then sent to the other device. The receiving device then performs
the same calculation on the data block that it receives and computes a BCC. A comparison is
made between the received BCC and the calculated one. If the BCCs are the same, then the
block of data was received error free. The receiving entity then notifies the sending device that
all was received "OK." If the BCCs are different, then the data was received with an error. The
protocols allow for asking for a retransmission of one of more blocks of data.

Factoring in the overhead, one can see where the block size will impact the sustained
throughput on a bus. Small block sizes appear to be inherently less efficient, owing to their
overhead for framing and flow control, but in reality they can be very efficient in terms of
memory usage. Depending on the cache, buffering, and memory sizes and speeds, small block
sizes can improve throughput. Conversely, large block sizes require inherently less protocol
overhead and may be great for bursts of data. However, improper memory management may
take away the gains of larger block sizes. Furthermore, if error conditions exist, then
retransmission must occur on a bus. The larger the block size, the longer it takes to retransmit
the block of data.

There are a number of different ways of transferring data between CPU and peripheral, and
these are usually classified as synchronous or asynchronous, depending on whether or not the
transfers bear a relationship to the system clock.

http://www.lintech.org

Computer Buses 5

1.3.1. Synchronous Buses

With a synchronous protocol, data transfers occur in relation to successive edges of the
system clock. Inherent in this type of protocol is the assumption that data will arrive within a
certain time window (if it does not, then the data is lost).

1.3.2. Asynchronous Buses

Asynchronous bus transfers bear no particular timing relation to the system clock; transfers can
take place at any time. Additional handshake lines are required in order to guarantee data
transfers between master and slave. Synchronous bus transfers, by way of contrast, only depend
on the system clock (the protocol being built into the system).

Asynchronous buses are useful when matching the different speeds of the CPU and
peripheral chips. For example, a processor can interface to both slow and fast semiconductor
memories using an asynchronous protocol. For a write operation, the protocol involves the bus
master advising the slave that it has some data ready to send. The slave advises the master upon
receipt of the data. The master then sends a message back to the slave acknowledging advice of
the successful transfer. Finally, the slave responds to this acknowledgement from the master; a
read operation follows a similar protocol. As with the synchronous bus, there will be delays due
to address decoding, setup times and skew.

1.3.3. Semi-synchronous Buses

A compromise between the two previous bus protocols is found in the semi-synchronous
bus, which approaches the speed of synchronous buses, but allows for interfacing to peripheral
devices of varying speeds. The semi-synchronous bus operates essentially as an asynchronous
bus until the peripheral device is ready for a transfer, after which the bus becomes synchronous
for the duration of the transfer.

1.4. Buses

A microcomputer system performance can sometime very much dependent on the system
bus and combination of buses, for example the PCI bus working in combination with the IDE or
SCSI bus as harddisk interface.

We shall only devote our attention here some commonly used buses.

1.4.1. Local Buses

What is a local bus? It is a bus that is local relative to the CPU, hence the name.
Computers have had buses in them forever, but recently there has been movement toward
industry-standard buses, away from the proprietary buses that existed in computers prior to the
advent of the PC. When IBM introduced PC, it defined the XT and AT buses and the move was
begun toward open buses.

http://www.lintech.org

Computer Buses 6

AT Bus Slots
[P e [|
[[PP
N
e | e |
sy
- i [FEEPE R et |
[] o [
—) 80286 e T e)

ﬁ Local Bus
Data Addresq|

>\ 80287

s]

8259A

]

AT bus architecture

In the early 1990s PCs began to incorporate what is called a local-bus I/0. Actually, there
were at least three different types of buses-i486 local bus, VL-bus, and PCI Bus. The VL-bus is an
extension to the 486 bus and has been used mainly for video. The 486 has been replaced by the
Pentium line of processor subsystems from Intel. Furthermore, the PCI Bus has taken over as
the dominant high-performance local bus due to its openness, performance, and support within
the industry.

Audio/Video
Processor/Main Memory System Expansion

A,

SCS| Hos
Adapter

Graphics
Adapter

Interface
o
Expansion Bus

@_ &;«- e K = e
Expansion Bus (ISA/EISA)

Bus Slot

Bus Slot Bus Slot

PCI bus architecture

ISA/EISA/Microchannel Architecture

http://www.lintech.org

Computer Buses 7

The original bus in the IBM PC/AT became the ISA bus (Industry Standard
Architecture). IBM and Compaq also pushed other buses. IBM introduced a totally new bus in
1987-the Microchannel (MCA). Due to incompatibility with the then-prevalent ISA bus,
Microchannel achieved limited acceptance and has given way to PCI. Largely driven by
Compagq in 1988, PC system vendors developed an extension to the ISA bus called the EISA
bus, for Extended 1SA. EISA-based systems began to appear in mid-1989. Use of EISA tended
to be limited to servers and highend desktops. Despite these efforts, ISA remained the dominant
I/O bus in PCs. ISA and EISA I/O performance simply could not keep up with the performance
demands of PC evolution.

(Video Electronics Standards Association) suggested an extension to the i486 bus to
address video performance. The extension consists of using a standard connector on the 1486
processor bus. VGA chips were typically mounted on removable cards and attached directly on
the 486 local bus. This setup became known as the VL-bus, for Vesa local bus. The connector
for the VL-bus is placed directly in line with the normal ISA connector, allowing a single slot
to be shared by either an ISA card or a VESA card.

1.4.2. PCI Bus (Peripheral Component Interconnect Bus)

The PCI Bus emerged as the answer to the performance bottleneck. The PCI bus is being
used to address all of the problems faced by video, disk (SCSI and IDE), network, etc.
However, it is a high-performance bus that is used for peripherals requiring CPU-like
performance. PCI is not targeted toward solving the needs of relatively slower devices like a
mouse, keyboard, speakers, etc. This is where USB fits.

The typical computer system consisted of a processor chip with an optional
high-performance cache memory. This bus consisted of 32 address signals, 32 data signals, and
associated control signals. It had a 33 MHz clock (the are also 66 MHz specification) and could
transfer 32 bits (or 64 bits) of data every clock cycle. A bridge chipset allowed the connection
of the system I/O bus, typically ISA, IDE or SCSL

The PCI local bus with great performance capabilities met many demands. The PCI Bus
is now a well-defined open standard. There are a massive number of PCI-based systems, PCI
cards, and chipsets. Today you can find PCI video cards, networking cards, SCSI and IDE
controller cards and chips, and others. Furthermore, PCI is processor independent and is used
on a number of different CPU-based systems, such as Intel, DEC Alpha, etc. Most systems
shipped today include a PCI bus with slots, or at least PCI-based peripherals.

http://www.lintech.org

32-Bit Portion

64-Bit Portion

1.4.2.1.PCI Chipsets

http://www.lintech.org

A

A

Computer Buses

3.3 V Board
B A
-12v TRST
TCK +12V
GND o TMS
TDO B TOr
+5V +5Y

INTA

—INID
PRSNT1

——1iBs
PRSNT2
Code &
Code

A PCI slot and its pins

8

Computer Buses 9

Various computer chips are necessary to provide the buses. A PCI chipset is a set of
chips that provides the PCI capability in a computer system or peripheral. Depending on the
system architecture, multiple chipsets may be required. For example, if an ISA bus is going to
be provided in the same system with a PCI Bus, there will need to be PCI chipsets to provide
both buses. A bridge chip is used to provide connectivity (or a bridge) between two different
types of buses. Similarly, PCI chipsets are used to connect the PCI slots and peripherals to the
other components of the system, such as CPU, memory, etc. So "PCI chipset" is a generic
reference to computer chips that enable PCI within a system. The complexity and number de-
pend on the features planned for a computer system

1.4.3. SCSI Bus and IDE

1.4.3.1. SCSI

SCSI is used to connect peripherals to a computer. As far back as the late 70s, disk-drive
manufacturers saw the need to improve the performance and standardization of disk drives and
other storage peripherals. Shugart Associates began by designing a new transfer protocol,
originally termed SASI (Shugart Associates Systems Interface). There was no ANSI standard
for this in the early days, but NCR joined Shugart, and the ANSI committee X3T9.2 was put in
place. The resulting protocol became an industry standard called small computer systems
interface (SCSI). In 1985 the common command set (CCS), was added, prior to ANSI's
finishing the SCSI standard in 1986. SCSI-II devices were released in 1988 and became a
standard in 1994. Here is the evolution of the SCSI bus.

SCSI-I: Original SCSI protocol. ANSI standard X3.1 31-1996 had a bus speed
of 5 MHz and a parallel data path of 8 bits.

SCSI-II: Added support for CD-ROMs, scanners, and tape drives.

Fast SCSI-II: Doubled the bus speed to 10 MHz from the original 5 MHz.

Wide SCSI-II: Doubled the data path to 16 bits instead of the original 8 bits.

Ultra SCSI-III: Doubled the bus speed to 20 MHz from 10 MHz (4 times the
original).

SCSI is used to connect peripherals and computers such as hard disks, tape devices, port
expanders, CD-ROMs, CD-R units, scanners, and many other devices. SCSI is similar in
functionality to IDA/ATA but can scale better, due to its focus on performance. The SCSI
specification also allows for the bus to be extended via a SCSI cable.

1.4.3.2. IDE

Seagate Technologies developed the original ST506 bus to support their 5- and 10-MB
disk drives, the ST506 and ST412, respectively. Prior to IDE, Maxtor developed the ESDI
(enhanced small device interface) bus to replace the ST506. With each evolution, the controller
intelligence for the disk drives was moved closer to the CPU system and eventually placed on
the motherboard, rather than on cards or within the drives. IDE (integrated drive electronics),
developed by Compaq and Western Digital, is a standard for connecting disk drives in a
common way to PC motherboards. In today's IDE configurations, multiple devices can share the
IDE controller. Initially two devices could be put on an IDE controller. Recently this number
was doubled to four. A newer version of IDE goes under the name ATA (AT bus attachment).

http://www.lintech.org

Computer Buses 10

1.4.4. FireWire and USB

1.4.4.1. FireWire

The IEEE-1394 standard, known as FireWire, is a serial SCSI-bus standard supporting
transfer rates from 100 to 400 MBps, expanding eventually up to 1.6 Gbps (gigabits per second)
or faster. We will come back to this a bit later.

1.4.4.2. Universal Serial Bus

The Universal Serial Bus (USB) standard is for connecting keyboards, monitors, input
devices, and digital cameras over a 12-Mbps bus network. USB is designed to simplify the
connection of peripheral devices, provide increased I/O capacity, and provide maximum
flexibility for the continued evolution of the PC. As connectivity demands increase, USB is to
provide for this expansion.

USB should eventually replace the PC's keyboard, serial, and parallel connections with a
simple jack architecture, with autodetection capabilities to know when a device is attached or
unattached, complete with configuration support. Another goal of USB is to improve the
connectivity of new peripherals by placing jacks in convenient locations. With today's
computers, the main connection location is on the back of the computer, which is generally not
conveniently accessible. With USB, the potential exists to put ports on the front of the
computer, on the monitor, keyboard, etc., making it extremely convenient for the typical user to
connect more peripherals. It also offers great flexibility and scalability.

Table: Bus Architectures Comparisons

Bus Type Industry Bus Width Bus Speed Transfer Rate
Reference (Bits) (MHz) (MBS)
ISA 8-BIT Industry 8 8 4
Standard
Architecture
ISA 16-BIT Industry 16 8 8
Standard
Architecture
MCA (32 bit) Microchannel 32 8 33
Architecture
EISA Extended 32 8.33 33.3
Industry
Standard
Architecture
VL-BUS VESA LocalBus 33 33 128-132
40
50
PCI (32 bit) Peripheral 32 33 132
Component
Interconnect
PCI (64 bit) Peripheral 64 33 264
Component
Interconnect
SCSI Small Computer (see above)
System Interface
1394 FireWire 100-400 100-400 Mbps
USB Universal Serial 12 12 Mbps
Bus

1.4.4.3. Fire Wire vs. USB

http://www.lintech.org

Computer Buses 11

{PRIVATE}Many people confuse 1394 and Universal Serial Bus (USB). It's
understandable. Both are emerging technologies that offer a new method of connecting multiple
peripherals to a computer. Both permit peripherals to be added to or disconnected from a
computer without the need to reboot. Both use thin, flexible cables which employ simple,
durable connectors.

Although 1394 and USB cables may look nearly the same, the amount of data flowing
through them is quite different. As the chart below shows, the widely different data transfer rate
capability of 1394 and USB marks the principal distinction between these two technologies:

{PRIVATE} 1394 FireWire USB
Maximum Number 62 127
Of Devices
Hot-Swap (Add Or Yes Yes
Remove Devices
Without Rebooting
Computer)
Maximum Cable 4.5m 5m
Length Between
Devices
Data Transfer 200mbps 12mbps
Rate (25MB/sec) (1.5MB/sec)
Bandwidth 400mbps None
Roadmap (50MB/sec)
800mbps
(100MB/sec)
1Gbps+
(125MB/sec+)

Macintosh Yes No
Implementation
Internal Peripheral Yes No
Connection
Peripheral Devices - DV Camcorders - Keyboards

- High-Resolution - Mice

Digital Cameras - Monitors

-HDTV - Joysticks

- Set-Top Boxes - Low-Resolution

- Hard Disks Digital Cameras

- DVD-ROM Drives | - Low-Speed CD-

- Printers ROM Drives

- Scanners - Modems

Firewire offers a data transfer rate that is over 16 times faster than USB. And the speed
gap will widen even further in months and years to come. That's because USB was designed
with no provision for future improvements in its data transfer capabilities. In contrast, Firewire
has a well-defined bandwidth roadmap, with speed increases to 400mbps (50MB/sec) and
possibly 800mbps (100MB/sec) expected in 1998, and 1Gbps+ (125MB/sec) and beyond in
succeeding years. Such dramatic improvements in data transfer capacity will be required to
keep pace with bandwidth hogging devices, such as HDTV, digital set-top boxes and home
automation systems, that plan to incorporate 1394 interfaces.

Most industry analysts expect Fire wire and USB to coexist peacefully in computers of
the future. Small Firewire and USB connectors will replace the gaggle of connectors found on
the back of today's PCs. USB will be reserved for low-bandwidth peripherals (mice, keyboards,
modems), while 1394 will be used to connect to the new generation of high-bandwidth
computer and consumer electronics products.

http://www.lintech.org

Computer Buses 12

1.5. USB

1.5.1. Architectural Overview

USB is a cable bus that supports data exchange between a host computer and a wide range of
simultaneously accessible peripherals. The attached peripherals share USB bandwidth through
a host scheduled token based protocol. The bus allows peripherals to be attached, configured,
used, and detached while the host and other peripherals are in operation. This is referred to as
dynamic (or hot) attachment and removal.

The USB interconnect is the manner in which USB devices are connected to and communicate

with the host. This includes:

= Bus Topology: Connection model between USB devices and the host.

= Inter-layer Relationships: In terms of a capability stack, the USB tasks that are performed at
each layer in the system.

= Data Flow Models: The manner in which data moves in the system over the USB between
producers and consumers.

» Scheduling the USB: USB provides a shared interconnect. Access to the interconnect is
scheduled in order to support isochronous data transfers.

1.5.1.1. Bus Topology

The Universal Serial Bus connects USB devices with the USB host. The USB physical
interconnect is a tiered star topology. A hub is at the center of each star. Each wire segment is a
point-to-point connection between the host and a hub or function, or a hub connected to another
hub or function.

Host {Root Tier,
Root Hub)

Tier 1

/S
/B =\

m | Hude | | Hode | Tier 4

USB topology

http://www.lintech.org

Computer Buses 13

1.5.1.2. Electrical specification

USB transfers signal and power over a four wire cable. The signaling occurs over two
wires and point-to-point segments. The signals on each segment are differentially driven into a
cable of 90 Q intrinsic impedance. The differential receiver features input sensitivity of at least
200 mV and sufficient common mode rejection.

There are two modes of signaling. The USB full speed signaling bit rate is 12 Mbs. A
limited capability low speed signaling mode is also defined at 1.5 Mbs. The low speed method
relies on less EMI protection. Both modes can be simultaneously supported in the same USB
system by mode switching between transfers in a device transparent manner. The low speed
mode is defined to support a limited number of low bandwidth devices such as mice, since
more general use would degrade the bus utilization.

The clock is transmitted encoded along with the differential data. The clock encoding
scheme is NRZI (which will be discussed later in chapter 7) with bit stuffing to ensure adequate
transitions. A SYNC field precedes each packet to allow the receiver(s) to synchronize their bit
recovery clocks.

5 meters max

VBus ral VBus

D+ D+

D- < e D-

GND T GND
USB cable.

The cable also carries VBus and GND wires on each segment to deliver power to
devices. VBus is nominally +5 V at the source. USB allows cable segments of variable lengths
up to several meters by choosing the appropriate conductor gauge to match the specified IR
drop and other attributes such as device power budget and cable flexibility. In order to provide
guaranteed input voltage levels and proper termination impedance, biased terminations are used
at each end of the cable. The terminations also permit the detection of attach and detach at each
port and differentiate between full speed and low speed devices.

1.5.1.3. Bus Protocol

All bus transactions involve the transmission of up to three packets. Each transaction
begins when the host controller, on a scheduled basis, sends a USB packet describing the type
and direction of transaction, the USB device address, and endpoint number. This packet is
referred to as the Token Packet. The USB device that is addressed selects itself by decoding the
appropriate address fields. In a given transaction, data is transferred either from the host to a
device or from a device to the host. The direction of data transfer is specified in the token
packet. The source of the transaction then sends a Data Packet or indicates it has no data to
transfer. The destination in general responds with a Handshake Packet indicating whether the
transfer was successful.

The USB data transfer model between a source or destination on the host and an endpoint
on a device is referred to as a pipe. There are two types of pipes: stream and message. Stream
data has no USB defined structure while message data does. Additionally, pipes have
associations of data bandwidth, transfer service type, and endpoint characteristics like
directionality and buffer sizes. Pipes come into existence when a USB device is configured.
One message pipe, Control Pipe 0, always exists once a device is powered in order to provide
access to the device's configuration, status, and control information.

http://www.lintech.org

Computer Buses 14

The transaction schedule allows flow control for some stream mode pipes. At the
hardware level, this prevents buffers from underrun or overrun situations by using a NACK
handshake to throttle the data rate. The token for a NACK'ed transaction is reissued when bus
time is available. The flow control mechanism permits the construction of flexible schedules
that accommodate concurrent servicing of a heterogeneous mix of stream mode pipes. Thus,
multiple stream mode pipes can be serviced at different intervals and with packets of different
sizes.

1.5.2. Physical Bus Topology

Devices on the USB are physically connected to the host via a tiered star topology. USB
attachment points are provided by a special class of USB device known as a hub. The additional
attachment points provided by a hub are called ports. A host includes an embedded hub called
the root hub. The host provides one or more attachment points via the root hub. USB devices
which provide additional functionality to the host are known as functions. To prevent circular
attachments, a tiered ordering is imposed on the star topology of the USB. This results in the
tree-like configuration illustrated in the figure below.

USB Physical Bus

Multiple functions may be packaged together in what appears to be a single physical
device. For example, a keyboard and a trackball might be combined in a single package. Inside
the package, the individual functions are permanently attached to a hub and it is the internal
hub that is connected to the USB. When multiple functions are combined with a hub in a single
package, they are referred to as a compound device. From the host's perspective, a compound
device is the same as a separate hub with multiple functions attached.

1.5.3. Logical Bus Topology

While devices physically attach to the USB in a tiered, star topology, the host
communicates with each logical device as if it were directly connected to the root port. This
creates the logical view illustrated in the following figure. Hubs are logical devices also, but are
not shown to simplify the picture. Even though most host/logical device activities use this
logical perspective, the host maintains an awareness of physical topology to support processing
the removal of hubs. When a hub is removed, all of the devices attached to the hub must be
removed from the host's view of the logical topology.

http://www.lintech.org

Computer Buses 15

USB logical bus topology

1.5.4. USB Communication Flow

USB provides a communication service between software on the host and its USB
function. Functions can have different communication flow requirements for different client to
function interactions. USB provides better overall bus utilization by allowing the separation of
the different communication flows to a USB function. Each communication flow makes use of
some bus access to accomplish communication between client and function. Each
communication flow is terminated at an endpoint on a device. Device endpoints are used to
identify aspects of each communication flow.

Hoat Interconnest Fhysical Device
[~ " i [b
: . Function :
' Client 5w - 1 ermoe T oo lkeian ot]
' mEmgen w1 imerimoe n 1 Imermoen 1

H L]
: 1Fipe Elut:‘ld '3 : [
! ' mn nkemoe 1 T '
' l_'—‘_ [H ' [[
1 ' H 1 '
Ho USE [i Iierimoe ha LS8 1
: mq R : Speatiin | ot !
1 L] 1 L]
. ' . USE Logical |
' LISE Bystem 5W ! ‘ 1 Enapant Devica | 1
' 2era m o ledilon ol '
[merimgen devioen ' Defadt Fipe 1 endpaint !
: : 10 EndphiniZera ! : USB Device
H]
] ' H 1 =8]
1] H
] Darim . H] 3 Dwim :
L]
USE Ham . USE Bua| ' |use Bua '
' Interface | Interface [
Howl L] ! L]
] Camralker LEED:med .] '
L] L]
' sIE ' ' SIE '
L] 1 1 L]
L] L]

USE Wire

il e, represents oamenion s ion \‘_-_.__.J

between o horonml enid ks hlachanical,

Dwrim renspar] mechen mm El=crizal,

Fratacal

-

USE-rekym formen o1 imrmparked deis

USB Host/Device View

A USB logical device appears to the USB system as a collection of endpoints. Endpoints
are grouped into endpoint sets which implement an Interface. Interfaces are views to the
function. System software manages the device using the Default Pipe (associated with Endpoint
0). Client software manages an Interface using pipe bundles (associated with an Endpoint Set).

http://www.lintech.org

Computer Buses 16

Client software requests that data be moved across the USB between a buffer on the host and an
endpoint on the USB device. The host controller (or USB device depending on transfer
direction) packetizes the data to move it over the USB. The host controller also coordinates
when bus access is used to move the packet of data over the USB.

1.5.5. USB protocol layer

This section presents a bottom-up view of the protocol starting with field and packet
definitions. This is followed by a description of packet transaction formats for different
transaction types. Link layer flow control and transaction level fault recovery is then covered.
The section finishes with a discussion of retry synchronization, babble, and loss of bus activity
recovery.

1.5.5.1 Bit Ordering

Bits are sent out onto the bus LSB first, followed by next LSB, through to MSB last. In the
following diagrams, packets are displayed such that both individual bits and fields are
represented (in a left to right reading order) as they would move across the bus.

1.5.5.2 SYNC Field

All packets begin with synchronization (SYNC) field, which is a coded sequence that generates
a maximum edge transition density. The SYNC field appears on the bus as IDLE followed by
the binary string "KJKJKJKK!', in its NRZI encoding. It is used by the input circuitry to align
incoming data with the local clock and is defined to be eight bits in length. SYNC serves only
as a synchronization mechanism and is not shown in the packet diagrams. The last two bits in
the SYNC field are a marker that is used to identify the first bit of the PID. All subsequent bits
in the packet must be indexed from this point.

1.5.5.3 EOP Width

The width EOP is about 2 * Tpgriop. The EOP width is measured with the same
capacitive load used for maximum rise and fall times and is measured at the same level as the
differential signal crossover points of the data lines.

Trepnn el———— | |

Ci Data
Citfarantial ——= = G IOSSOVET
il .
Data Lines ™, - Level
1
ECH ..|
Width

EOP width timing

For full speed transmissions, the EOP width from the transmitter must be between 160 ns
and 175 ns. For low speed transmissions, the transmitter's EOP width must be between 1.25 ps
and 1.50 ps. These ranges include timing variations due to differential buffer delay and rise/fall
time mismatches and to noise and other random effects.

1.5.5.4 Packet Field Formats

Field formats for the token, data, and handshake packets are described in the following section.
Packet bit definitions are displayed in unencoded data format. The effects of NRZI coding and
bit stuffing have been removed for the sake of clarity. All packets have distinct start and end of

http://www.lintech.org

Computer Buses 17

packet delimiters. The start of packet (SOP) is part of the SYNC field, and the end of packet
(EOP).

1.5.5.5 Packet Identifier Field

A packet identifier (PID) immediately follows the SYNC field of every USB packet. A PID
consists of a four bit packet type field followed by a four-bit check field as shown. The PID
indicates the type of packet and, by inference, the format of the packet and the type of error
detection applied to the packet. The four-bit check field of the PID insures reliable decoding of
the PID so that the remainder of the packet is interpreted correctly. The PID check field is
generated by performing a ones complement of the packet type field.

(LSB) (MSB)

| PID, PID, | PID, | PID; PID, PID, | PID; | PID,

PID Format

The host and all functions must perform a complete decoding of all received PID fields. Any
PID received with a failed check field or which decodes to a non-defined value is assumed to be
corrupted and it, as well as the remainder of the packet, is ignored by the packet receiver. If a
function receives an otherwise valid PID for a transaction type or direction that it does not
support, the function must not respond. For example, an IN only endpoint must ignore an OUT
token. PID types, codings, and descriptions are listed below

PID types, codings, and descriptions

PID PID Name PID[3:0] Description
Type
Token | OUT b0001 Address + endpoint number in host ->
function transaction
IN b1001 Address + endpoint number in function
-> host transaction
SOF b0101 Start of frame marker and frame number
SETUP b1101 Address + endpoint number in host ->

function transaction for setup to a
control endpoint

Data DATAO b0011 Data packet PID even

DATAI b1011 Data packet PID odd
Hands | ACK b0010 Receiver accepts error free data packet
hake

NAK b1010 Rx device cannot accept data or Tx

device cannot send data

STALL b1110 Endpoint is stalled
Specia | PRE b1100 Host-issued preamble. Enables
1 downstream bus traffic to LS devices.

PIDs are divided into four coding groups: token, data, handshake, or special, with the first two
transmitted PID bits (PID<1:0>) indicating which group. This accounts for the distribution of
PID codes.

http://www.lintech.org

Computer Buses 18

1.5.5.6 Address Fields

Function endpoints are addressed using two fields: the function address field and the endpoint
field. A function needs to fully decode both Address and Endpoint fields. Address or endpoint
aliasing is not permitted, and a mismatch on either field must cause the token to be ignored.
Accesses to non-initialized endpoints will also cause the token to be ignored.

1.5.5.6.1 Address Field

The function address (ADDR) field specifies the function, via its address, that is either the
source or destination of a data packet, depending on the value of the token PID. A total of 128
addresses are specified as ADDR<6:0>. The ADDR field is specified for IN, SETUP, and OUT
tokens.

By definition, each ADDR value defines a single function. Upon reset and power-up, a
function's address defaults to a value of 0 and must be programmed by the host during the
enumeration process. The 0 default address is reserved for default and cannot be assigned for
normal operation.

(LSb) (MSb)
f Addro | Addr1 | Addr2 [Addr3 | Addr4 | Addr5 | Addrs |
ADDR Field

1.5.5.6.2 Endpoint Field

An additional four-bit endpoint (ENDP) field permits more flexible addressing of functions in
which more than one sub-channel is required. Endpoint numbers are function specific. The
endpoint field is defined for IN, SETUP, and OUT token PIDs only. All functions must support
one control endpoint at 0. Low speed devices support a maximum of two endpoint addresses
per function: 0 plus one additional endpoint. Full speed functions may support up to the
maximum of 16 endpoints.

(LSb) (MSb)
I Endp 0 I Endp 1 | Endp 2 | Endp 3 I
Endpoint Field

1.5.5.7 Frame Number Field

The frame number field is an 11-bit field that is incremented by the host on a per frame basis.
The frame number field rolls over upon reaching its maximum value of Xx7FF, and is sent only
for SOF tokens at the start of each frame.

1.5.5.8 Data Field
The data field may range from 0 to 1023 bytes and must be an integral numbers of bytes. Data
bits within each byte are shifted out LSB first.

[Byte N-1 Byte N Byte N+1 |

Data packet size varies with the transfer type.

1.5.5.9 Cyclic Redundancy Checks

Cyclic redundancy checks (CRCs) are used to protect the all non-PID fields in token and data
packets. In this context, these fields are considered to be protected fields. The PID is not
included in the CRC check of a packet containing a CRC. All CRCs are generated over their
respective fields in the transmitter before bit stuffing is performed. Similarly, CRCs are

http://www.lintech.org

Computer Buses 19

decoded in the receiver after stuffed bits have been removed. Token and data packet CRCs
provide 100% coverage for all single and double bit errors. A failed CRC is considered to
indicate that one or more of the protected fields is corrupted and causes the receiver to ignore
those fields, and, in most cases, the entire packet. For CRC generation and checking, the shift
registers in the generator and checker are seeded with an all ones pattern.

1.5.5.9.1 Token CRCs
A five-bit CRC field is provided for tokens and covers the ADDR and ENDP fields of IN,
SETUP, and OUT tokens or the time stamp field of an SOF token. The generator polynomial is:

GX)=X"+X*+1

1.5.6.9.2 Data CRCs
The data CRC is a 16-bit polynomial applied over the data field of a data packet. The
generating polynomial is:

GX)=X"+X"+X*+1

1.5.5.10 Packet Formats

This section shows packet formats for token, data, and handshake packets. Fields within a
packet are displayed in the order in which bits are shifted out onto the bus in the order shown in
the figures.

1.5.5.10.1 Token Packets

A token consists of a PID, specifying either IN, OUT, or SETUP packet type, and ADDR and
ENDP fields. For OUT and SETUP transactions, the address and endpoint fields uniquely
identify the endpoint that will receive the subsequent data packet. For IN transactions, these
fields uniquely identify which endpoint should transmit a data packet. Only the host can issue
token packets. IN PIDs define a data transaction from a function to the host. OUT and SETUP
PIDs define data transactions from the host to a function.

8 bits 7 bits 4 bits 5 bits

| PID | ADDR | ENDP | CrC5

Token Format

Token packets have a five-bit CRC which covers the address and endpoint fields as shown
above. The CRC does not cover the PID, which has its own check field. Token and SOF
packets are delimited by an EOP after three bytes of packet field data. If a packet decodes as an
otherwise valid token or SOF but does not terminate with an EOP after three bytes, it must be
considered invalid and ignored by the receiver.

1.5.5.10.2 Start of Frame Packets

Start of Frame (SOF) packets are issued by the host at a nominal rate of once every 1.00 ms
+0.05. SOF packets consist of a PID indicating packet type followed by an 11-bit frame number
field.

8 bits 11 bits 5 bits
| PID | Frame Number | CRC5 |

http://www.lintech.org

Computer Buses 20

SOF Packet

The SOF token comprises the token-only transaction that distributes a start of frame marker and
accompanying frame number at precisely timed intervals corresponding to the start of each
frame. All full speed functions, including hubs, must receive and decode the SOF packet. The
SOF token does not cause any receiving function to generate a return packet; therefore, SOF
delivery to any given function cannot be guaranteed. The SOF packet delivers two pieces of
timing information. A function is informed that a start of frame has occurred when it detects the
SOF PID. Frame timing sensitive functions, which do not need to keep track of frame number,
need only decode the SOF PID; they can ignore the frame number and its CRC. If a function
needs to track frame number, then it must comprehend both the PID and the time stamp.

1.5.5.10.3 Data Packets

A data packet consists of a PID, a data field, and a CRC. There are two types of data packets,
identified by differing PIDs: DATAO and DATA1. Two data packet PIDs are defined to

support data toggle synchronization.

8 bits 0-1023 bytes 16 bits
[PID | DATA I CrRC16 |
Data Packet Format

Data must always be sent in integral numbers of bytes. The data CRC is computed over only the
data field in the packet and does not include the PID, which has its own check field.

1.5.5.10.4 Handshake Packets

Handshake packets consist of only a PID. Handshake packets are used to report the status of a
data transaction and can return values indicating successful reception of data, flow control, and
stall conditions. Only transaction types that support flow control can return handshakes.
Handshakes are always returned in the handshake phase of a transaction and may be returned,
instead of data, in the data phase. Handshake packets are delimited by an EOP after one byte of
packet field. If a packet decodes as an otherwise valid handshake but does not terminate with an
EOP after one byte, it must be considered invalid and ignored by the receiver.

8 bits
PID
Handshake Packet

There are three types of handshake packets:

= ACK indicates that the data packet was received without bit stuff or CRC errors over the
data field and that the data PID was received correctly. ACK may be issued either when
sequence bits match and the receiver can accept data or when sequence bits mismatch and
the sender and receiver must resynchronize to each other. An ACK handshake is applicable
only in transactions which data has been transmitted and where a handshake is expected.
ACK can be returned by the host for IN transactions and by a function for OUT
transactions.

= NAK indicates that a function was unable to accept data from the host (OUT) or that a
function has no data to transmit to the host (IN). NAK can only be returned by functions in
the data phase of IN transactions or the handshake phase of OUT transactions, and the host
can never issue a NAK. NAK is used for flow control purposes to indicate that a function is

http://www.lintech.org

Computer Buses 21

temporarily unable to transmit or receive data, but will eventually be able to do so without
need of host intervention. NAK is also used by interrupt endpoints to indicate that no
interrupt is pending.

= STALL is returned by a function in response to an IN token or after the data phase of an
OUT. STALL indicates that a function is unable to transmit or receive data, and that the
condition requires host intervention to remove the stall. Once a function's endpoint is
stalled, the function must continue returning STALL until the condition causing the stall
has been cleared through host intervention. The host is not permitted to return a STALL
under any condition.

15.5.10.5 Handshake Responses

Transmitting and receiving functions must return handshakes based upon an order of
precedence. Not all handshakes are allowed, depending on the transaction type and whether the
handshake is being issued by a function or the host. For more details, refer to the USB
specification.

1.5.6 Transaction Formats

Packet transaction format varies depending on the endpoint type. There are four endpoint types:
bulk, control, interrupt, and isochronous.

1.5.6.1 Bulk Transactions

Bulk transaction types are characterized by the ability to guarantee error free delivery of data
between the host and a function by means of error detection and retry. Bulk transactions use a
three phase transaction consisting of token, data, and handshake packets. Under certain flow
control and stall conditions, the data phase may be replaced with a handshake resulting in a two
phase transaction in which no data is transmitted.

http://www.lintech.org

Computer Buses 22

Idle
Tok
oxen IN ouT
DATAQ/ DATAW
DATA1 NAK STALL DATA1
Data

ACK ACK NAK STALL

b Idle

|:| Host |:| Function

Bulk Transaction Format

When the host wishes to receive bulk data, it issues an IN token. The function endpoint
responds by returning either a DATA packet or, should it be unable to return data, a NAK or
STALL handshake. A NAK indicates that the function is temporarily unable to return data,
while a STALL indicates that the endpoint is permanently stalled and requires host software
intervention. If the host receives a valid data packet, it responds with an ACK handshake. If the
host detects an error while receiving data, it returns no handshake packet to the function.

When the host wishes to transmit bulk data, it first issues an OUT token packet followed by a
data packet. The function then returns one of three handshakes. ACK indicates that the data
packet was received without errors and informs the host that that it may send the next packet in
the sequence. NAK indicates that the data was received without error but that the host should
resend the data because the function was in a temporary condition preventing it from accepting
the data at this time (e.g., buffer full). If the endpoint was stalled, STALL is returned to indicate
that the host should not retry the transmission because there is an error condition on the
function. If the data packet was received with a CRC or bit stuff error, no handshake is
returned.

Data packet synchronization is achieved via use of the data sequence toggle bits and the
DATAO/DATAT1 PIDs. Bulk endpoints must have their toggle sequence bits initialized via a
separate control endpoint.

Bulk OUT (0) OUT (1) OouT
write (0/1)

DATAO DATALI DATAO0/1

http://www.lintech.org

Computer Buses 23

Bulk IN (0) IN (0/1)
Read

DATAO DATALI DATAO0/1

Bulk Reads and Writes

The host always initializes the first transaction of a bus transfer to the DATAO PID. The second
transaction uses a DATA1 PID, and successive data transfers alternate for the remainder of the
bulk transfer. The data packet transmitter toggles upon receipt of ACK, and the receiver toggles
upon receipt and acceptance of a valid data packet.

1.5.6.2 Control Transfers

Control transfers minimally have two transaction stages: Setup and Status. A control transfer
may optionally contain a data stage between the setup and status stages. During the Setup stage,
a Setup transaction is used to transmit information to the control endpoint of a function. Setup
transactions are similar in format to an OUT, but use a SETUP rather than on OUT PID. A
Setup always uses a DATAO PID for the data field of the Setup transaction. The function
receiving a Setup must accept the Setup data and respond with an ACK handshake or, if the
data is corrupted, discard the data and return no handshake.

[+][:]

Token SETUP

Data I DATAND |

Handshake ACK

— . B

:| Host |:| Funclion

Control Setup Transaction

The data stage, if present, of a control transfer consists of one or more IN or OUT transactions
and follows the same protocol rules as bulk transfers. All the transactions in the data stage must
be in the same direction, i.e., all INs or all OUTs. The amount of data to be sent during the data
phase and its direction are specified during the Setup stage. If the amount of data exceeds the

http://www.lintech.org

Computer Buses 24

prenegotiated data packet size, the data is sent in multiple transactions (INs or OUTs) which
carry the maximum packet size. Any remaining data is sent as a residual in the last transaction.

The status stage of a control transfer is the last operation in the sequence. A status stage is
delineated by a change in direction of data flow from the previous stage and always uses a
DATA1 PID. If, for example, the data stage consists of OUTs, the status is a single IN
transaction. If the control sequence has no data stage, then it consists of a Setup stage followed
by a Status stage consisting of an IN transaction. The following Figure shows the transaction
order, the data sequence bit value and the data PID types for control read and write sequences.
The sequence bits are displayed in parentheses.

Balup Dala Satus
Blage Blage Elnfpe
] 4 [. R "
ﬁm:ul SETUP {0y ouT 1) OUT oy OUT o) IM [1)
DATAD DETAT OATAD ATAL DATAT
g:g;m' SETUP (o) IN (1) IN (@) IN {oe1) ouT (1)
DETED DATAY DATAY DARTADN DATAT
Balisp Siabus
Slage Stage
[} : |
No-data | gETUP oy IN (1)
Control
DATAD DATAY

Control Read and Write Sequences

1.5.6.2.1 Reporting Status Results

The status stage reports to the host the outcome of the previous setup and data stages of the
transfer. Three possible results may be returned:

= The command sequence completed successfully

* The command sequence failed to complete

= The function is still busy completing command

Status reporting is always in the function to host direction.

1.5.6.2.2 Error Handling on the Last Data Transaction

If the ACK handshake on an IN transaction gets corrupted, the function and the host will
temporarily disagree on whether the transaction was successful. If the transaction is followed
by another IN, the toggle retry mechanism will detect the mismatch and recover from the error.
If the ACK was on the last IN of a control transfer, then the toggle retry mechanism cannot be
used and an alternative scheme must be used. The host which successfully received the data of
the last IN, issues an OUT setup transfer, and the function, upon seeing that the token direction
has toggled, interprets this action as proof that the host successfully received the data. In other
words, the function interprets the toggling of the token direction as implicit proof of the host's
successful receipt of the last ACK handshake. Therefore, when the function sees the OUT setup
transaction, it advances to the status phase.

http://www.lintech.org

Computer Buses 25

Control writes do not have this ambiguity. The host, by virtue of receiving the handshake,
knows for sure if the last transaction was successful. If an ACK handshake on an OUT gets
corrupted, the host does not advance to the status phase and retries the last data instead.

1.5.6.3 Interrupt Transactions

Interrupt transactions consist solely of IN. Upon receipt of an IN token, a function may return
data, NAK, or STALL. If the endpoint has no new interrupt information to return, i.e., no
interrupt is pending, the function returns a NAK handshake during the data phase. A stalled
interrupt endpoint causes the function to return a STALL handshake if it is permanently stalled
and requires software intervention by the host. If an interrupt is pending, the function returns
the interrupt information as a data packet. The host, in response to receipt of the data packet,
issues either an ACK handshake if data was received error free or returns no handshake if the
data packet was received corrupted.

Iclla

Token
r ey
- e
-
Data |gﬂ:ﬁ" |mu: | |51.u.L|.|
——— = ke
Handshake
Host Davice
e - J
" - lcdle

Interrupt Transaction Format

When an endpoint is using the Interrupt transfer mechanism for actual interrupt data, the data
toggle protocol must be followed. This allows the function to know that the data has been
received by the host and the event condition may be cleared. This "guaranteed' delivery of
events allows the function to only send the interrupt information until it has been received by
the host rather than having to send the interrupt data every time the function is polled and until
host software clears the interrupt condition. When used in the toggle mode, an interrupt
endpoint is initialized to the DATAO PID and behaves the same as the bulk IN transaction. An
Interrupt endpoint may also be used to communicate rate feedback information for certain types
of isochronous functions. When used in this mode, the data toggle bits should be changed after
each data packet is sent to the host without regard to the presence or type of handshake packet.

1.5.6.4 Isochronous Transactions

http://www.lintech.org

Computer Buses 26

ISO transactions have a token and data phase, but no handshake phase. The host issues either an
IN or an OUT token followed by the data phase in which the endpoint (for INs) or the host (for
OUTs) transmits data. ISO transactions do not support a handshake phase or retry capability.

Idle
ouT
IN Token
DATAC DATAD Data
- Idle

|:| Host |:| Function

Isochronous Transaction Format

ISO transactions do not support toggle sequencing, and the data PID is always DATAOQ. The
packet receiver does not examine the data PID.

1.5.7 Data Toggle Synchronization and Retry

USB provides a mechanism to guarantee data sequence synchronization between data
transmitter and receiver across multiple transactions. This mechanism provides a means of
guaranteeing that the handshake phase of a transaction was interpreted correctly by both the
transmitter and receiver. Synchronization is achieved via use of the DATAO and DATA1 PIDs
and separate data toggle sequence bits for the data transmitter and receiver. Receiver sequence
bits toggle only when the receiver is able to accept data and receives an error free data packet
with the correct data PID. Transmitter sequence bits toggle only when the data transmitter
receives a valid ACK handshake. The data transmitter and receiver must have their sequence
bits synchronized at the start of a transaction, and the mechanism for doing this varies with the
transaction type. Data toggle synchronization is not supported for ISO transfers.

1.5.7.1 Initialization via SETUP Token

Control transfers use the SETUP token for initializing host and function sequence bits. Figure
below shows the host issuing a SETUP packet to a function followed by an OUT. The numbers
in the circles represent the transmitter and receiver sequence bits. The function must accept the
data and ACK the transaction. When the function accepts the transaction, it must reset its
sequence bit so that both the hosts and function's sequence bits are equal to '1' at the end of the
SETUP transaction.

http://www.lintech.org

Computer Buses 27

1.5.7.2 Data Corrupted or Not Accepted

If data cannot be accepted or the received data packet is corrupted, the receiver will issue a
NAK or STALL handshake, or will time out, depending on the circumstances, and the receiver
will not toggle its sequence bit. Where a transaction is NAKed and then retried. Any non-ACK
handshake or time out will generate similar retry behavior. The transmitter, having not received
an ACK handshake, will not toggle its sequence bit. As a result, a failed data packet transaction
leaves the transmitter's and receiver's sequence bits synchronized and untoggled. The
transaction will then be retried and, if successful, will cause both transmitter and receiver
sequence bits to toggle.

1.5.7.3 Corrupted ACK Handshake

DATAQ DATAD DATA1

HEGH GHEH O G
6 ® (3(3

Transfer i Transfer i Transferi+1
(retried)

The transmitter is the last and only agent to know for sure whether a transaction has been
successful, due to its receiving an ACK handshake. A lost or corrupted ACK handshake can
lead to a temporary loss of synchronization between transmitter and receiver. Here the
transmitter issues a valid data packet, which is successfully acquired by the receiver; however,
the ACK handshake is corrupted.

At the end of transaction <i>, there is a temporary loss of coherency between transmitter and
receiver, as evidenced by the mismatch between their respective sequence bits. The receiver has
received good data, but the transmitter does not know whether it has successfully sent data. On
the next transaction, the transmitter will resend the previous data using the previous DATAOQ
PID. The receiver's sequence bit and the data PID will not match, so the receiver knows that it
has previously accepted this data. Consequently, it discards the incoming data packet and does
not toggle its sequence bit. The receiver then issues an ACK, which causes the transmitter to
regard the retried transaction as successful. Receipt of ACK causes the transmitter to toggle its
sequence bit. At the beginning of transaction <i+1>, the sequence bits have toggled and are
again synchronized. The data transmitter must guarantee that any retried data packet be
identical in length to that sent in the original transaction. If the data transmitter is unable,
because of problems such as a buffer underrun condition, to transmit the identical amount of
data as was in the original data packet, it must abort the transaction by generating a bit stuffing
violation. This causes a detectable error at the receiver and guarantees that a partial packet will
not be interpreted as a good packet. The transmitter should not try to force an error at the
receiver by sending a known bad CRC. A combination of a bad packet with a **bad" CRC may
be interpreted by the receiver as a good packet.

http://www.lintech.org

Computer Buses 28

1.5.8 Low Speed Transactions

USB supports signaling at two speeds: full speed (FS) signaling at 12.0 Mbs and low speed
(LS) signaling at 1.5 Mbs. Hubs disable downstream bus traffic to all ports to which LS devices
are attached during full speed downstream signaling. This is required both for EMI reasons and
to prevent any possibility that an LS device might misinterpret downstream a FS packet as
being addressed to it. Figure 8-19 shows an IN LS transaction in which the host issues a token
and handshake and receives a data packet.

Huby enables low Hub disablas low
speed porl outpuls speed port cutputs
ngm:&ed l' Token sent at kow speed *
B~ | » | oo e[
Drata packet sent at low spead
BYMC PID DATA CRC EQP |
Hub enablas low Epfud p{:rtaﬂ mﬂ
ub enables ou
Freambla speed port oulpuls
sent at full spead Handshake sent at low speed *

g —m—,

B e | e o

Low Speed Transaction

All downstream packets transmitted to LS devices require a preamble. The preamble consists of

a SYNC followed by a PID, both sent at full speed. Hubs must comprehend the PRE PID; all

other USB devices must ignore it and treat it as undefined. After the end of the preamble PID,

the host must wait at least 4 full speed bit times during which hubs must complete the process

of configuring their repeater sections to accept LS signaling. During this hub setup interval,

hubs must drive their FS and LS ports to their respective idle states. Hubs must be ready to

accept low speed signaling from the host before the end of the hub setup interval. Low speed

connectivity rules are summarized below:

1. Low speed devices are identified during the connection process and the hub ports to which
they are connected are identified as low speed.

2. All downstream low speed packets must be prefaced with a preamble (sent at full speed)
which turns on the output buffers on low speed hub ports.

3. Low speed hub port output buffers are turned off upon receipt of EOP and are not turned on
again until a preamble PID is detected.

4. Upstream connectivity is not affected by whether a hub port is full or low speed.

The start of LS signaling commences with the host issuing SYNC at low speed, followed by the

remainder of the packet. The end of packet is identified by End of Packet (EOP), at which time
all hubs tear down connectivity and disable any ports to which LS devices are connected. Hubs

http://www.lintech.org

Computer Buses 29

do not switch ports for upstream signaling; LS ports remain enabled in the upstream direction
for both LS and FS signaling. LS and FS transactions maintain a high degree of protocol
commonality. However, LS signaling does have certain limitations which include:

= Data payload limited to eight bytes, maximum

= LS only supports Interrupt and Control types of transfers

= The SOF packet is not received by LS devices

1.5.9 Error Detection and Recovery

USB is designed to permit reliable end to end communication in the presence of errors on the
physical signaling layer. This includes the ability to reliably detect the vast majority of possible
errors and to recover from errors on a transaction type basis. Control transactions, for example,
require a high degree of data reliability; they support end to end data integrity using error
detection and retry. ISO transactions, by virtue of their bandwidth and latency requirements, do
not permit retries and must tolerate a higher incidence of uncorrected errors.

1.5.9.1 Packet Error Categories
USB employs three error detection mechanisms: bit stuff violations, PID check bits, and CRCs.

1.5.9.2 Bus Turnaround Timing

The host and USB function need to keep track of how much time has elapsed from when the
transmitter completes sending a packet until it begins to receive a packet back. This time is
referred to as the bus turnaround time and is tracked by the packet transmitter's bus turnaround
timer. Both devices and the host require turnaround timers. The device bus turnaround time is
defined by the worst case round trip delay plus the maximum device response. USB devices
cannot time out earlier than 16 bit times after the end of the previous EOP and they must time
out by 18 bit times. If the host wishes to indicate an error condition via a timeout, it must wait
at least 18 bit times before issuing the next token to insure that all downstream devices have
timed out.

| OuUT/SEPUP >| Data | Handshake |
Device waits Host wait

I IN >I Data I Handshake I
Host waits Device wait

Bus Turnaround Timer Usage

As shown above, the device uses its bus turnaround timer between token and data or data and
handshake phases. The host uses its timer between data and handshake or token and data
phases. If the host receives a corrupted data packet, it must wait before sending out the next
token. This wait interval guarantees that the host does not attempt to issue a token immediately
after a false EOP.

1.5.9.3 False EOPs
If such an event were to occur, it would constitute a bus collision and have the ability to corrupt
up to two consecutive transactions.

http://www.lintech.org

Computer Buses 30

1.5.9.4 Babble and Loss of Activity Recovery

USB must be able to detect and recover from conditions which leave it waiting indefinitely for
an end of packet or which leave the bus in something other than the idle state at the end of a
frame. Loss of activity (LOA) is characterized by start of packet (SOP) followed by lack of bus
activity and no end of packet (EOP) at the end of a frame. Babble is characterized by an SOP
followed by the presence of bus activity past the end of a frame. LOA and babble have the
potential to either deadlock the bus or force out the beginning of the next frame. Neither
condition is acceptable, and both must be prevented from occurring. As the USB component
responsible for controlling connectivity, hubs are responsible for babble/LOA detection and
recovery. All USB devices that fail to complete their transmission at the end of a frame are
prevented from transmitting past a frame's end by having the nearest hub disable the port to
which the offending device is attached. Details of the hub babble/LOA recovery

mechanism appear in Section 11.4.3 of the USB specification.

1.6. Bluetooth:

1.6.1.Technology Overview

The technology is an open specification for wireless communication of data and voice. It is
based on a low-cost short-range radio link, built into a 9 x 9 mm microchip, facilitating
protected ad hoc connections for stationary and mobile communication environments.
Bluetooth - A Global Specification for Wireless Connectivity. Bluetooth technology allows for
the replacement of the many proprietary cables that connect one device to another with one
universal short-range radio link. For instance, Bluetooth radio technology built into both the
cellular telephone and the laptop would replace the cumbersome cable used today to connect a
laptop to a cellular telephone. Printers, PDA's, desktops, fax machines, keyboards, joysticks and
virtually any other digital device can be part of the Bluetooth system. But beyond untethering
devices by replacing the cables, Bluetooth radio technology provides a universal bridge to
existing data networks, a peripheral interface, and a mechanism to form small private ad hoc
groupings of connected devices away from fixed network infrastructures. Designed to operate
in a noisy radio frequency environment, the Bluetooth radio uses a fast acknowledgement and
frequency hopping scheme to make the link robust. Bluetooth radio modules avoid interference
from other signals by hopping to a new frequency after transmitting or receiving a packet.
Compared with other systems operating in the same frequency band, the Bluetooth radio
typically hops faster and uses shorter packets. This makes the Bluetooth radio more robust than
other systems. Short packages and fast hopping also limit the impact of domestic and
professional microwave ovens. Use of Forward Error Correction (FEC) limits the impact of
random noise on long-distance links. The encoding is optimized for an uncoordinated
environment. Bluetooth radios operate in the unlicensed ISM band at 2.4 GHz. A frequency hop
transceiver is applied to combat interference and fading. A shaped, binary FM modulation is
applied to minimize transceiver complexity. The gross data rate is 1Mb/s. A Time-Division
Duplex scheme is used for full-duplex transmission. The Bluetooth baseband protocol is a
combination of circuit and packet switching. Slots can be reserved for synchronous packets.

http://www.lintech.org

Computer Buses 31

Each packet is transmitted in a different hop frequency. A packet nominally covers a single slot,
but can be extended to cover up to five slots. Bluetooth can support an asynchronous data
channel, up to three simultaneous synchronous voice channels, or a channel which
simultaneously supports asynchronous data and synchronous voice. Each voice channel
supports 64 kb/s synchronous (voice) link. The asynchronous channel can support an
asymmetric link of maximally 721 kb/s in either direction while permitting 57.6 kb/s in the
return direction, or a 432.6 kb/s symmetric link. The different functions in the Bluetooth system
are:

* aradio unit

* alink control unit

* link management

* software functions

| 24 Ghz Bluetooth
Bluetooth § -sagft——3ge-| baseband host
radio contralfer

1.6.2. Definitions

= Piconet: a collection of devices connected via Bluetooth technology in an ad hoc fashion. A
piconet starts with two connected devices, such as a portable PC and cellular phone, and
may grow to eight connected devices.All Bluetooth devices are peer units and have
identical implementations. However, when establishing a piconet, one unit will act as a
master and the other(s) as slave(s) for the duration of the piconet connection.

= Scatternet: Multiple independent and non-synchronized piconets form a scatternet

= Master unit: the device in a piconet whose clock and hopping sequence are used to
synchronize all other devices in the piconet.

= Slave units: all devices in a piconet that are not the master.

» Mac address: 3-bit address to distinguish between units participating in the piconet.

» Parked units: devices in a piconet which are synchronized but do not have a MAC
addresses.

= Sniff and hold mode: devices synchronized to a piconet can enter power-saving modes in
which device activity is lowered.

1.6.3. Network topology

The Bluetooth system supports both point-to-point and point-to-multi-point connections.
Several piconets can be established and linked together ad hoc, where each piconet is identified
by a different frequency hopping sequence. All users participating on the same piconet are
synchronized to this hopping sequence. The topology can best be described as a multiple
piconet structure.

http://www.lintech.org

Computer Buses 32

The full-duplex data rate within a multiple piconet structure with 10 fully-loaded, independent
piconets is more than 6 Mb/s.

1.6.3.1.Voice

Voice channels use the Continuous Variable Slope Delta Modulation (CVSD) voice coding
scheme, and never retransmit voice packets. The CVSD method was chosen for its robustness
in handling dropped and damaged voice samples. Rising interference levels are experienced as
increased background noise: even at bit error rates up 4%, the CVSD coded voice is quite
audible.

1.6.3.2. Radio

The Bluetooth air interface is based on a nominal antenna power of 0dBm. The air interface
complies with the FCC rules for the ISM band at power levels up to 0dBm. Spectrum spreading
has been added to facilitate optional operation at power levels up to 100 mW worldwide.
Spectrum spreading is accomplished by frequency hopping in 79 hops displaced by 1 MHz,
starting at 2.402 GHz and stopping at 2.480 GHz. Due to local regulations the bandwidth is
reduced in Japan, France and Spain. This is handled by an internal software switch. The
maximum frequency hopping rate is 1600 hops/s. The nominal link range is 10 centimeters to
10 meters, but can be extended to more than 100 meters by increasing the transmit power.
Baseband

The baseband describes the specifications of the digital signal processing part of the hardware -
the Bluetooth link controller, which carries out the baseband protocols and other low-level link
routines. Establishing network connections

Before any connections in a piconet are created, all devices are in STANDBY mode. In this
mode, an unconnected unit periodically "listens" for messages every 1.28 seconds. Each time a
device wakes up, it listens on a set of 32 hop frequencies defined for that unit. The number of
hop frequencies varies in different geographic regions; 32 is the number for most countries
(except Japan, Spain and France).

The connection procedure is initiated by any of the devices which then becomes master. A
connection is made by a PAGE message if the address is already known, or by an INQUIRY
message followed by a subsequent PAGE message if the address is unknown. In the initial
PAGE state, the master unit will send a train of 16 identical page messages on 16 different hop
frequencies defined for the device to be paged (slave unit). If no response, the master transmits
a train on the remaining 16 hop frequencies in the wake-up sequence. The maximum delay

http://www.lintech.org

Computer Buses 33

before the master reaches the slave is twice the wakeup period (2.56 seconds) while the average
delay is half the wakeup period (0.64 seconds).

The INQUIRY message is typically used for finding Bluetooth devices, including public
printers, fax machines and similar devices with an unknown address. The INQUIRY message is
very similar to the page message, but may require one additional train period to collect all the
responses. A power saving mode can be used for connected units in a piconet if no data needs
to be transmitted.

The master unit can put slave units into HOLD mode, where only an internal timer is running.
Slave units can also demand to be put into HOLD mode. Data transfer restarts instantly when
units transition out of HOLD mode. The HOLD is used when connecting several piconets or
managing a low power device such as a temperature sensor.

Two more low power modes are available, the SNIFF mode and the PARK mode. In the SNIFF
mode, a slave device listens to the piconet at reduced rate, thus reducing its duty cycle. The
SNIFF interval is programmable and depends on the application. In the PARK mode, a device
is still synchronized to the piconet but does not participate in the traffic. Parked devices have
given up their MAC address and occasional listen to the traffic of the master to re-synchronize
and check on broadcast messages. If we list the modes in increasing order of power efficiency,
then the SNIFF mode has the higher duty cycle, followed by the HOLD mode with a lower duty
cycle, and finishing with the PARK mode with the lowest duty cycle. Link types and packet

types

Unconnected
Standby

Conneeting
States

T!,lpll:aln-lll.ﬂe

Active Transmiz C ann e ted
States

Low Powar
Modes

Releages Keeps MAC Addresc
W AC
Address

The link type defines what type of packets can be used on a particular link. The Bluetooth
baseband technology supports two link types:
= Synchronous Connection Oriented (SCO) type (used primarily for voice)

http://www.lintech.org

Computer Buses 34

= Asynchronous Connectionless (ACL) type (used primarily for packet data)

Different master-slave pairs of the same piconet can use different link types, and the link type
may change arbitrarily during a session. Each link type supports up to sixteen different packet
types. Four of these are control packets and are common for both SCO and ACL links. Both
link types use a Time Division Duplex (TDD) scheme for full-duplex transmissions. The SCO
link is symmetric and typically supports time-bounded voice traffic. SCO packets are
transmitted over reserved intervals. Once the connection is established, both master and slave
units may send SCO packets without being polled. One SCO packet types allows both voice
and data transmission - with only the data portion being retransmitted when corrupted. The
ACL link is packet oriented and supports both symmetric and asymmetric traffic. The master
unit controls the link bandwidth and decides how much piconet bandwidth is given to each
slave, and the symmetry of the traffic. Slaves must be polled before they can transmit data. The
ACL link also supports broadcast messages from the master to all slaves in the piconet. Error
correction There are three error-correction schemes defined for Bluetooth baseband controllers:
= 1/3 rate forward error correction code (FEC)

= 2/3 rate forward error correction code FEC

= Automatic repeat request (ARQ) scheme for data.

The purpose of the FEC scheme on the data payload is to reduce the number of retransmissions.
However, in a reasonably error-free environment, FEC creates unnecessary overhead that
reduces the throughput. Therefore, the packet definitions have been kept flexible as to whether
or not to use FEC in the payload. The packet header is always protected by a 1/3 rate FEC,; it
contains valuable link information and should survive bit errors. An unnumbered ARQ scheme
is applied in which data transmitted in one slot is directly acknowledged by the recipient in the
next slot. For a data transmission to be acknowledged both the header error check and the
cyclic redundancy check must be okay; otherwise a negative acknowledge is returned.
Authentication and Privacy The Bluetooth baseband provides user protection and information
privacy mechanisms at the physical layer. Authentication and encryption is implemented in the
same way in each Bluetooth device, appropriate for the ad hoc nature of the network.
Connections may require a one-way, two-way, or no authentication. Authentication is based on
a challenge-response algorithm. Authentication is a key component of any Bluetooth system,
allowing the user to develop a domain of trust between a personal Bluetooth device, such as
allowing only the owner's notebook computer to communicate through the owner's cellular
telephone. Encryption is used to protect the privacy of the connection. Bluetooth uses a stream
cipher well suited for a silicon implementation with secret key lengths of 0, 40, or 64 bits. Key
management is left to higher layer software. The goal of Bluetooth's security mechanisms is to
provide an appropriate level of protection for Bluetooth's short-range nature and use in a global
environment. Users requiring stalwart protection are encouraged to use stronger security
mechanisms available in network transport protocols and application programs.

1.6.4. Link Management

The Link Manager (LM) software entity carries out link setup, authentication, link
configuration, and other protocols. The Link Manager discovers other remote LM's and
communicates with them via the Link Manager Protocol (LMP). To perform its service
provider role, the LM uses the services of the underlying Link Controller (LC). Services
provided:

» Sending and receiving of data

http://www.lintech.org

Computer Buses 35

= Name request. The Link Manager has an efficient means to inquire and report a name or
device ID upto 16 characters in length.

= Link address inquiries.

= Connection set-up.

= Authentication.

= Link mode negotiation and set-up, e.g. data or data/voice. This may be changed during a
connection.

= The Link Manager decides the actual frame type on a packet-by-packet basis.

= Setting a device in sniff mode. In sniff mode, the duty cycle of the slave is reduced: it
listens only every M slots where M is negotiated at the Link manager. The master can only
start transmission in specified time slots spaced at regular intervals.

= Setting a link device on hold. In hold mode, turning off the receiver for longer periods
saves power. Any device can wake up the link again, with an average latency of 4 seconds.
This is defined by the Link Manager and handled by the Link Controller.

= Setting a device in park mode when it does not need to participate on the channel but wants
to stay synchronized. It wakes up at regular intervals to listen to the channel in order to re-
synchronize with the rest of the piconet, and to check for page messages.

1.6.5. Software Framework

Bluetooth devices will be required to support baseline interoperability feature requirements to
create a positive consumer experience. For some devices, these requirements will extend from
radio module compliance and air protocols, up to application-level protocols and object
exchange formats. For other devices, such as a headset, the feature requirements will be
significantly less. Ensuring that any device displaying the Bluetooth "logo" interoperates with
other Bluetooth devices is a goal of the Bluetooth program. Software interoperability begins
with the Bluetooth link level protocol responsible for protocol multiplexing, device and service
discovery, and segmentation and reassembly. Bluetooth devices must be able to recognise each
other and load the appropriate software to discover the higher level abilities each device
supports. Interoperability at the application level requires identical protocol stacks. Different
classes of Bluetooth devices (PC's, handhelds, headsets, cellular telephones) have different
compliance requirements. For example, you would never expect a Bluetooth headset to contain
an address book. Headsets compliance implies Bluetooth radio compliance, audio capability,
and device discovery protocols. More functionality would be expected from cellular phones,
handheld and notebook computers. To obtain this functionality, the Bluetooth software
framework will reuse existing specifications such as OBEX, vCard/vCalendar, Human Interface
Device (HID), and TCP/IP rather than invent yet another set of new specifications. Device
compliance will require conformance to both the Bluetooth Specification and existing
protocols. The Software Framework is contemplating the following functions:

= Configuration and diagnosis utility

= Device discovery

= (Cable emulation

= Peripheral communication

= Audio communication and call control

= Object exchange for business cards and phone books Networking protocol

http://www.lintech.org

Computer Buses 36

1.6.6. PC General

Usage models and implementation examples with a notebook PC focus are described in this
section. The Bluetooth Specification contemplates interfaces where the radio modules may be
integrated into notebook personal computers or attached using PC-Card or USB. Notebook PC
usage models include:

= Remote networking using a Bluetooth cellular phone.

= Speakerphone applications using a Bluetooth cellular phone

= Business card exchange between Bluetooth notebooks, handhelds, and phones.

= (Calendar synchronisation between Bluetooth notebooks, handhelds, and phones.

Bluetooth technology is operating system independent and not tied to any specific operating
system. Implementations of the Bluetooth Specification for several commercial operating
systems are in development. For notebook computers, the implementation of the Bluetooth
Specification in Microsoft Windows98 and NT 5.0 using WDM and NDIS drivers is being
contemplated.* Customer-visible interoperability is promoted by requiring minimal levels of
software functionality, such as speakerphone, on notebook computers.) *Third-party brands and
names are the property of their respective owners.

Telephone

Usage models and implementation examples focused on the digital cellular phone are described

in this section. The Bluetooth Specification contemplates interfaces where the radio modules

may be integrated directly into cellular handsets or attached using an add-on device. Phone

usage models include (are not constrained to):

= Wireless hands-free operation using a Bluetooth headset.

= (Cable-free remote networking with a Bluetooth notebook or handheld computer.

» Business card exchange with other Bluetooth phones, notebook or handheld computers.

= Automatic address book synchronisation with trusted Bluetooth notebooks or handheld
computers.

The Bluetooth compliance document will require digital cellular phones to support some subset
of the Bluetooth Specification. The Bluetooth contingents within the telephony Promoter
companies are working with their fellow employees involved in the Wireless Application
Protocol (WAP) Forum to investigate how the two technologies can benefit from each other.
Others

Usage models and implementation examples centered on other contemplated Bluetooth devices
include:

» Headsets

* Handheld and wearable devices

= Human Interface Device (HID) compliant peripherals

= Data and voice access points

The wireless headset will support untethered audio for phones and provide phone-quality audio
for notebook computers operating in sound-sensitive environments. The Bluetooth compliance
document will specify the various parts of the Specification and existing specifications required
by different classes of peripherals.

http://www.lintech.org

Computer Buses 37

1.7. Reference:

Messmer, Hans-Peter., "The indispensable PC hardware book : your hardware questions
answered." Addison-Wesley, 1994.

McDowell, Steven and Seyer, Martin D., "USB explained" Prentice Hall PTR.

http://www.lintech.org

	Chapter 	Computer Buses
	Microcomputer Bus Structure
	Bus Definition

	Speed of Data transfer
	Serial vs. Parallel
	Speeds of Buses
	Sustained vs. Burst Throughput

	Bus Protocols
	Synchronous Buses
	Asynchronous Buses
	Semi-synchronous Buses

	Buses
	Local Buses
	PCI Bus (Peripheral Component Interconnect Bus)
	PCI Chipsets

	SCSI Bus and IDE
	SCSI
	IDE

	FireWire and USB
	FireWire
	Universal Serial Bus
	Fire Wire vs. USB

	USB
	Architectural Overview
	Bus Topology
	Electrical specification
	Bus Protocol

	Physical Bus Topology
	Logical Bus Topology
	USB Communication Flow
	USB protocol layer
	1.5.5.1 Bit Ordering
	1.5.5.2 SYNC Field
	1.5.5.3	EOP Width
	1.5.5.4 Packet Field Formats
	1.5.5.5 Packet Identifier Field
	1.5.5.6 Address Fields
	1.5.5.6.1 Address Field
	1.5.5.6.2 Endpoint Field

	1.5.5.7 Frame Number Field
	1.5.5.8 Data Field
	1.5.5.9 Cyclic Redundancy Checks
	1.5.5.9.1 Token CRCs
	1.5.6.9.2 Data CRCs

	1.5.5.10 Packet Formats
	1.5.5.10.1 Token Packets
	1.5.5.10.2 Start of Frame Packets
	1.5.5.10.3 Data Packets
	1.5.5.10.4 Handshake Packets
	15.5.10.5 Handshake Responses

	1.5.6 Transaction Formats
	1.5.6.1 Bulk Transactions
	1.5.6.2 Control Transfers
	1.5.6.2.1 Reporting Status Results
	1.5.6.2.2 Error Handling on the Last Data Transaction

	1.5.6.3 Interrupt Transactions
	1.5.6.4 Isochronous Transactions

	1.5.7 Data Toggle Synchronization and Retry
	1.5.7.1 Initialization via SETUP Token
	1.5.7.2 Data Corrupted or Not Accepted
	1.5.7.3 Corrupted ACK Handshake

	1.5.8 Low Speed Transactions
	1.5.9 Error Detection and Recovery
	1.5.9.1 Packet Error Categories
	1.5.9.2 Bus Turnaround Timing
	1.5.9.3 False EOPs
	1.5.9.4 Babble and Loss of Activity Recovery

	Bluetooth:
	Technology Overview
	 Definitions
	Network topology
	Voice
	Radio

	Link Management
	Software Framework
	PC General

	Reference:

